
Splat & Sculpt: Single-View 3D Reconstruction
via Gaussian Sculpting Networks

Ruihan Xu1, Anthony Opipari1, Joshua Mah1, Stanley Lewis1

Haoran Zhang1, Hanzhe Guo1, and Odest Chadwicke Jenkins1

Fig. 1: Overview of the Gaussian Sculpting Network (GSN) for single-view 3D reconstruction. Left: Using a single observed image, the GSN transforms
a canonical Gaussian splat with predicted colors, covariances, positions, and opacities. Right: Output from the GSN is combined to form a Gaussian splat
representing the reconstructed 3D surface geometry and texture of the observed object.

Abstract—This paper introduces Gaussian Sculpting Networks
as an approach for 3D object reconstruction from single-view
image observations. Gaussian sculpting networks (GSNs) take
a single observation as input to generate a Gaussian splat
representation describing the observed object’s shape and texture
(Fig. 1). By using a shared feature extractor before decoding
Gaussian colors, covariances, positions, and opacities, GSNs
achieve extremely high throughput (>150FPS). Experiments
demonstrate that GSNs can be trained efficiently using a multi-
view rendering loss and are competitive, in quality, with expensive
diffusion-based reconstruction algorithms. The GSN model is
validated on multiple benchmark experiments. Moreover, we
demonstrate the potential for GSNs to be used within a robotic
manipulation pipeline for object-centric grasping.

I. INTRODUCTION

Autonomous robots tasked with operating in complex, un-
structured environments must be able to perceive their envi-
ronment and the objects within it. In particular, perceiving
the shape and visual properties of objects is needed in order
for robots to effectively plan and act using those objects. At
a given instant, a robot can typically only observe part of an
object’s surface and must rely on 3D reconstruction algorithms
to perceive the remaining occluded surface. Moreover, the
ability to understand and interact with novel objects that were
previously unobserved during model training remains a critical
requirement for unstructured settings.

Novel view synthesis offers a promising direction for robots
to reconstruct detailed object models using only sparse view-
points from their environment. For example, Neural Radi-
ance Fields (NeRFs), is a technique that enables novel view
synthesis and 3D reconstruction by using neural implicit

1All authors are affiliated with the Department of Robotics, University of
Michigan, Ann Arbor, MI, USA, 48109.

∗R. Xu and A. Opipari are the corresponding authors:
rhxu@umich.edu, topipari@umich.edu

representations to render new views of a scene based only
on a small set of observed images [1, 2]. While NeRFs
have demonstrated impressive results and received a surge of
interest within robotic use cases, their implicit nature often
poses challenges for direct integration with robotic planning
and control modules [3, 4, 5, 6, 7].

Against this backdrop, Gaussian Splatting has emerged as an
explicit alternative for representing scenes and objects while
also enabling novel view synthesis [8]. This approach uses
a collection of Gaussian-shaped primitives to approximate a
continuous scene volume along with a differentiable, highly
efficient rendering technique to optimize each Gaussian against
the observed views. The explicit nature of Gaussian Splatting
representations has the potential to be used within robotic
perception by downstream planning and control algorithms.
Recent work has demonstrated the potential for Gaussian
Splatting within robotic manipulation [9, 10] and naviga-
tion [11, 12]. While Gaussian Splatting has enabled novel view
synthesis with an explicit representation useful for robotics, for
3D reconstruction it requires multiple diverse image observa-
tions, which are not always available. In this project, we set
out to enable high throughput 3D reconstruction using single-
view images with Gaussian Splatting. More specifically, we
set out to develop a model that can generate an object-centric
Gaussian splat reconstruction given only a single image.

The present paper makes the following contributions:
1) Propose and develop Gaussian Sculpting Networks

(GSNs), to generate Gaussian splats from single-view
image observations in real time.

2) Perform quantitative and qualitative evaluations of GSNs
to understand relative tradeoffs in comparison to existing
3D reconstruction approaches.

3) We demonstrate the potential for GSN to be used within
a robotic manipulation pipeline for grasping.

II. RELATED WORK

A. Multi-View 3D Reconstruction

Multi-view 3D reconstruction is a foundational topic within
computer vision and robotic perception that seeks to infer
the three-dimensional structure of a scene using numerous
images taken from different vantage points throughout the
scene. Classical approaches, such as Structure from Motion
(SfM) and Multi-View Stereo enable the derivation of 3D
points or volumetric representations by triangulating matched
features across multiple images [13, 14]. End-to-end deep
learning-based approaches have been considered including
MVSNet [15] and DeepMVS [16] for depth map estimation as
well as DeepSDF [17] as a continuous shape representation.
More recently, neural radiance fields (NeRFs) are proposed
as an approach to implicitly reconstruct volumetric scenes
from sparse image observations [1, 2, 18]. Following the surge
of interest in NeRFs, Gaussian splatting is developed as an
explicit approach to novel view synthesis from multi-view
images [8]. Notably, Gaussian splatting represents a scene
as a mixture of Gaussians distributed throughout the scene
and optimized using gradient descent. In contrast to these
approaches, the present paper sets out to reconstruct 3D scenes
using only a single observed image.

B. Single-View 3D Reconstruction

In single-view 3d reconstruction, algorithms have access to
only a single image of the object whose shape they set out
to estimate. Early approaches used shading cues to estimate
geometric surface contours [19, 20]. Following the rise of deep
learning, convolutional neural networks have been proposed
for voxel-grid reconstruction from single images [21]. Image-
conditioned reconstruction into point cloud representations
has been proposed using convolution [22] and diffusion-
based architectures [23, 24]. Following the introduction of
Gaussian splatting, 3D reconstruction using splats as a 3D
representation has gained interest [25, 26, 27]. Watson et al.
introduce 3DiM to generate novel views with a single image
using image-based diffusion, then generate 3D splats using
those generated images [26]. Similarly, Feng et al. employ
image-level diffusion with additional geometric constraints to
improve the reconstruction speed and quality. Szymanowicz
et al. propose a convolutional architecture to directly regress
an output Gaussian Splat representation offering substantial
speedups [25]. We set out to further improve the efficiency of
single-view reconstruction based on Gaussian splatting.

III. METHOD

A. Gaussian Primitive: 3D Gaussian Splatting

A Gaussian Primitive G is parameterized by 4 variables:
mean µ ∈ R3, covariance Σ ∈ R3×3 : Σ ≻ 0, RGB color
c ∈ R3 : 0 ≤ c ≤ 1, and opacity α ∈ R : 0 < α ≤ 1. To
simplify optimization, we follow [8] and decompose Σ into
scale s ∈ R3 : s > 0 and rotation r ∈ R4 : |r| = rr∗ = 1
represented using rotation quaternions. The resulting Gaussian
will have the form of G = (µ, s, r, c, α). A scene or object can

thus be represented by a collection of Gaussians that form a
Gaussian Splat

S := {Gi, i = 1, ..., N} = {(µi, si, ri, ci, αi), i = 1, ..., N}

The 3D Gaussian Splatting [8] renderer R takes a 3D
Gaussian Splat S and maps it into a 2D image I using camera
pose p ∈ R3 and rotation R ∈ R3×3 : R⊺R = I. Here, we
want to find the function F that inverts the process R such
that F(I) = R−1(I) = S . The reconstruction from this single
image should preserve the correct 3D representation of the
object, allowing it to render novel views of the object from
viewpoints different to the input image.

Instead of letting the neural network directly predict the 5
parameters for each Gaussian, our method predicts a deviation
of the parameters from a canonical cube. The canonical cube
refers to a collection of Gaussians, Ḡi, that are evenly spaced
apart on a unit cube with covariances Σ̄i = δI ∀i = 1, . . . , N
where δ ∈ R : δ > 0 is a small scalar constant, with color
and opacity values that are randomly sampled without any
constraints. The resultant initial Gaussian Splat would thus
have predefined (µ̄i, s̄i) ∀i = 1, . . . , N and would resemble
a point cloud since the covariance scale is isotropic in R3.
To generate the predicted Gaussian Splat Spred, our network
f predicts an error term ∆µi,∆si and values ri, ci, αi for a
fixed number of Gaussians N such that

f(I) = {(∆µi,∆si, ri, ci, αi), i = 1, . . . , N}

The final predicted Gaussian Splat has the form

Spred = {(µ̄i +∆µi, s̄i +∆si, ri, ci, αi), i = 1, . . . , N}

B. Network Architecture

As illustrated in Fig. 2, the network feature extractor takes
the image as input and encodes it into a latent vector followed
by a decoding step into Gaussian parameters.

1) Encoder: We adopted ResNet [28] as the backbone of
the encoder with some modifications. Instead of directly using
the 2048 size latent vector output from the ResNet, we take the
output from the second last layer that has a size of 2048×7×7
latent tensor. This tensor is then fed into two 2D convolutions
followed by ReLU activation and finally gets a vector of size
1 × 2352 after flattening the tensor. The design was chosen
since, experimentally, taking the output from the ResNet with a
smaller receptive field allows the network to capture more fine-
grained details to reconstruct the Gaussian Splat. We discuss
this choice in more detail in the ablation section.

2) Decoder: Parallel MLPs are used to decode
the latent vector into Gaussian parameters ∆S =
{(∆µi,∆si, ri, ci, αi), i = 1, . . . , N}. For each of the 5
parameters, we have an independent MLP layer to output
N × size of parameter number of values, where N
is predefined as the number of Gaussian. For example,
to describe ∆µ for one Gaussian, we need three values,
∆µx,∆µy,∆µz , so the output of the MLP for ∆µ will have
N × 3 output size. For each MLP, there consists of two fully
connected linear layers and the first linear layer is followed

Fig. 2: Gaussian Sculpting Network Architecture. Our Encoder-Decoder style network takes an input image and encodes it into a latent vector. Subsequently,
a decoder with parallel MLPs decodes the latent vector into Gaussian parameters, sculpting a canonical Gaussian Splat into a 3D object presented in the input
image. Finally, we perform multi-view rendering to obtain various novel views for loss calculation.

by a ReLU activation. For predicted scale s̄i + ∆si, we
apply ReLU activation followed by addition with a small
scalar constant ϵ ∈ R : ϵ > 0 to ensure that the covariance is
positive definite. For predicted rotation ri, we normalize ri
without making the real quaternion term positive, whereas for
color ci and opacity αi, we apply a dimensionwise sigmoid
function.

C. Loss Formulation

To train the neural network F , we aim to minimize the
difference between a set of ground truth images with different
camera poses and the rendered images from a predicted
Gaussian Splat. Specifically, given an input image of an object,
the network predicts a 3D Gaussian Splat conditioned on this
input image. We then render the Splat from different views
and compare it with available ground truth images taken from
those viewpoints.

Ĩi := R(S̃, pi,Ri)

Ii = R(F(Iinput), pi,Ri)

Lloss =
1

k

k∑
i=1

floss(Ĩi, Ii)

where Ĩi denotes the ground truth image i, S̃ denotes some
hypothetical ground truth Gaussian Splat that would generate
Ĩ and k represents the number of sampled images for each
object.

For the actual loss calculation, we adopt 4 different losses:
L2, L1, Lpips, and DSSIM. The total loss is a combination
of all 4 losses. Our specific loss formulation comes from a
combination of the Splatter Image loss [25] and from the
original 3D Gaussian Splatting work [8].

Llpips = (1− λlpips)LL2 + λlpipsLlpips (1)

LDSSIM = (1− λDSSIM)LL1

+ λDSSIMLDSSIM

(2)

Lloss = Llpips + LDSSIM (3)

Method Chairs Cars
PSNR↑ SSIM↑ Lpips↓ PSNR↑ SSIM↑ Lpips↓

SRN 22.89 0.89 0.104 22.25 0.88 0.129
CodeNeRF 23.66 0.90 0.166 23.80 0.91 0.128
PixelNeRF 23.72 0.90 0.128 23.17 0.89 0.146
Splatter∗ 23.03 0.91 0.101 23.72 0.91 0.107

GSN (ours)∗ 24.33 0.92 0.123 23.27 0.91 0.120

TABLE I: ShapeNet-SRN: Single-view 3D reconstruction. Methods marked ∗ are
trained on our local machine with RTX A6000 for a fixed amount of iteration in a
limited amount of time before the convergence. While the statistics for other methods
are adopted from experiments in prior works. The result shows that our model performs
better than some of the prior methods even before the training is converged.

Method FPS↑
Splatter 50

GSN (ours) 164

TABLE II: Performance during inference. Our method is significantly faster than the
recent baseline for generating Gaussian Splat from a single input image.

Qualitatively, we note that L2 and DSSIM [29] seemed to
contribute to shaping the overall structure and color of the
object. Using only these losses, the final output would appear
fuzzy, a phenomenon noted in [30], hence L1 and lpips were
added to help learn more fine-grained details.

In practice, we randomly sample 3 other images on top of
the original input image to compute the loss for each data
point. The original input image would be used to assess how
well the model can encode and reconstruct observable object
details while the final 3 images would capture how well the
model can generalize for unseen portions of the object.

IV. EXPERIMENT

To evaluate the performance of our proposed framework, we
trained our model against the chairs and cars dataset provided
by [25]. We trained our model and image-splatter [25] for
roughly the same number of iterations (200k).

A. Single-View 3D reconstruction on Chairs and Cars

In this task, the model predicts a 3D representation (Gaus-
sian Splat in this case) of an object given a single input view
of that object. Novel target views are then rendered from this
representation and the performance is measured by comparing
these rendered images with the ground truth images. We follow
the practice of prior works, such as [31] [1] [32] [33], and

Fig. 3: Qualitative single-view reconstruction comparison.

measure the performance in terms of the Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity (SSIM) and perceptual
quality (LPIPS). For PSNR and SSIM, higher values indicate
better quality, whereas for LPIPS, lower values are preferable.
For datasets, we adopt the ShapeNet-SRN dataset for cars
and chairs from [32] which aligns with the recent single-view
Gaussian Splat generation model [25].

Results. We trained our model on the chair dataset for 8
epochs and the cars dataset for 15 epochs over two days,
using a batch size of 8. To ensure direct comparability with the
Splatter Image model [25], we converted epochs to iterations,
maintaining a similar number of training iterations for both
datasets and trained the Splatter Image for the same amount
of iteration time. For the chair dataset, one epoch corresponds
to 28,825 iterations; thus, 8 epochs require 230,600 iterations.
Similarly, for the car dataset, one epoch comprises 15,363 iter-
ations, resulting in a total of 230,445 iterations for 15 epochs.
Both models are trained and evaluated on the same hardware
setting with RTX A6000. Table I and Figure 3 show how
our model performs quantitatively and qualitatively to other
baselines. As demonstrated, our method performs roughly
3 times faster than the next fastest method (splatter-image)
while having comparable quantitative image reconstruction
quality to other recent baselines. Qualitatively, we note that
while our model can accurately capture larger shapes, it still
struggles with extremely fine-grained details, especially on the
chair dataset which consists of many skinny leg and handle
structures.

B. Comparative Study

We consider three key areas: the size of the ResNet architec-
ture used, the selection of the latent vector, and the selection
of the origin of the unit cube used to generate the initial set of
Gaussian. We compare between ResNet50 and ResNet152 for
the ResNet Architecture. For the latent vector, we consider
either taking the final output of the ResNet (size 2048) or
the second last layer (size 100352) and compressing it with 2
convolution layers (size 2352), ensuring the size of the latent

Method ResNet50 ResNet152
Train Val Train Val

Zero-Centered (2048) 4.37 ×10−3 5.44 ×10−3 4.30 ×10−3 5.32 ×10−3

Off-Centered (2048) 5.07 ×10−3 5.64 ×10−3 5.59 ×10−3 6.07 ×10−3

Zero-Centered (2352) 3.8 ×10−3 5.35 ×10−3 4.02 ×10−3 4.68 ×10−3

Off-Centered (2352) 4.62 ×10−3 5.58 ×10−3 4.68 ×10−3 5.64 ×10−3

LPIPs results for comparative studies.
LPIPs results for comparative studies.

TABLE III: weighted L2 +
LPIPs results for comparative studies.

vector in either case to be roughly similar. For the cube origin
we consider one where the camera is centered on the origin and
the cube 1 meter ahead from the camera, and the other where
the unit cube is on the origin and the camera is 1 meter away
from the origin. In both cases, the Gaussian splat has been
rotated so that the camera remains upright in both frames of
reference. This implies that the deformation of the Gaussians
on the unit cube directly encodes the 3D shifts required to
capture the shape of the object with respect to the camera
viewpoint.

Results. For each of the scenarios listed above, we trained
with a smaller data set containing 30 car objects with 150
views each. We use LPIPs as the quantitative measure. Table
IV-B shows the results of the comparative study. The greatest
impact comes from centering the unit cube on the origin of
the frame. The low impact of the latent vector and architecture
might however be due to the small dataset and further studies
would be conducted given more time.
C. Grasp Generation

We also evaluate the effectiveness of our generated 3D
Gaussian Splat for practical robot manipulation tasks to gauge
its suitability for real-world applications. In this experiment,
the model predicts a Gaussian splat based on an input image of
an object. Subsequently, the 3D object is rendered into a novel
view, which is utilized for robot grasp prediction by Dex-Net
2.0 [34]. Specifically, based on this novel view, we conduct
depth estimation employing MiDaS [35] to generate a depth
map, and Segment Anything (SAM) [36] to produce a binary
mask. Utilizing these outputs, Dex-Net generates a grasp pose
along with a q-value, where a higher q-value indicates better
grasp quality. During the trials, Dex-Net can generate grasps
for a chair sample with a q-value=0.882 and for a car sample
with a q-value=0.614. This result is shown in Figure 4.

V. CONCLUSION

This paper makes three central contributions: (1) a Gaussian
Sculpting Network for real-time single-image 3D reconstruc-
tion, (2) experiments validating the sculpting network design,
and (3) demonstrations to highlight how GSN is applicable to a
robotic grasping pipeline. Experiments demonstrated the high-
throughput of GSNs and suggest their potential for application
to robotic perception tasks. Results from this study suggest
future directions to further improve reconstruction quality by
focusing on fine-grained texture detail.

Fig. 4: Generated grasp using Dex-Net 2.0 from a novel view render from
3D Gaussian Splat generated by our model. The Objects are scaled down to
a suitable size for grasping. In these examples, the Dex-Net 2.0 can generate
grasps for the chair with q-value=0.882 and for cars with q-value=0.614

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in ECCV, 2020.

[2] S. Pan, L. Jin, H. Hu, M. Popović, and M. Bennewitz, “How many
views are needed to reconstruct an unknown object using nerf?,” arXiv
preprint arXiv:2310.00684, 2023.

[3] J. Kerr, L. Fu, H. Huang, Y. Avigal, M. Tancik, J. Ichnowski,
A. Kanazawa, and K. Goldberg, “Evo-nerf: Evolving nerf for sequential
robot grasping of transparent objects,” in 6th Annual Conference on
Robot Learning, 2022.

[4] M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson,
J. Bohg, and M. Schwager, “Vision-only robot navigation in a neural
radiance world,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 4606–4613, 2022.

[5] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba, “3d neural
scene representations for visuomotor control,” in Conference on Robot
Learning, pp. 112–123, PMLR, 2022.

[6] A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam: Real-time
dense monocular slam with neural radiance fields,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 3437–3444, IEEE, 2023.

[7] S. Lewis, B. Aldeeb, A. Opipari, E. A. Olson, C. Kisailus, and O. C.
Jenkins, “Nerf-frenemy: Co-opting adversarial learning for autonomy-
directed co-design,”

[8] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering,” ACM Transactions on
Graphics, vol. 42, July 2023.

[9] J. Abou-Chakra, K. Rana, F. Dayoub, and N. Sünderhauf, “Physically
embodied gaussian splatting: Embedding physical priors into a visual 3d
world model for robotics,” in Conference on Robot Learning, no. 7th,
2023.

[10] Y. Zheng, X. Chen, Y. Zheng, S. Gu, R. Yang, B. Jin, P. Li, C. Zhong,
Z. Wang, L. Liu, et al., “Gaussiangrasper: 3d language gaussian splatting
for open-vocabulary robotic grasping,” arXiv preprint arXiv:2403.09637,
2024.

[11] N. Keetha, J. Karhade, K. M. Jatavallabhula, G. Yang, S. Scherer,
D. Ramanan, and J. Luiten, “Splatam: Splat, track map 3d gaussians
for dense rgb-d slam,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024.

[12] G. Chen and W. Wang, “A survey on 3d gaussian splatting,” arXiv
preprint arXiv:2401.03890, 2024.

[13] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521623049, 2000.

[14] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A com-
parison and evaluation of multi-view stereo reconstruction algorithms,”
in 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), vol. 1, pp. 519–528, 2006.

[15] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth inference
for unstructured multi-view stereo,” in Proceedings of the European
conference on computer vision (ECCV), pp. 767–783, 2018.

[16] P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “Deepmvs:
Learning multi-view stereopsis,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2821–2830, 2018.

[17] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape rep-
resentation,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 165–174, 2019.

[18] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut,
and D. Novotny, “Common objects in 3d: Large-scale learning and
evaluation of real-life 3d category reconstruction,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10901–
10911, 2021.

[19] B. K. Horn, “Shape from shading: A method for obtaining the shape of
a smooth opaque object from one view,” 1970.

[20] J.-D. Durou, M. Falcone, and M. Sagona, “Numerical methods for shape-
from-shading: A new survey with benchmarks,” Computer Vision and
Image Understanding, vol. 109, no. 1, pp. 22–43, 2008.

[21] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee, “Perspective transformer
nets: Learning single-view 3d object reconstruction without 3d super-
vision,” Advances in neural information processing systems, vol. 29,
2016.

[22] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-net: Point
cloud upsampling network,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2790–2799, 2018.

[23] L. Zhou, Y. Du, and J. Wu, “3d shape generation and completion through
point-voxel diffusion,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5826–5835, 2021.

[24] A. Nichol, H. Jun, P. Dhariwal, P. Mishkin, and M. Chen, “Point-e: A
system for generating 3d point clouds from complex prompts,” 2022.

[25] S. Szymanowicz, C. Rupprecht, and A. Vedaldi, “Splatter image: Ultra-
fast single-view 3d reconstruction,” 2023.

[26] D. Watson, W. Chan, R. Martin-Brualla, J. Ho, A. Tagliasacchi, and
M. Norouzi, “Novel view synthesis with diffusion models,” 2022.

[27] Q. Feng, Z. Xing, Z. Wu, and Y.-G. Jiang, “Fdgaussian: Fast gaussian
splatting from single image via geometric-aware diffusion model,” arXiv
preprint arXiv:2403.10242, 2024.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[29] A. H. Baker, A. Pinard, and D. M. Hammerling, “Dssim: a structural
similarity index for floating-point data,” 2023.

[30] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,”
2018.

[31] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” 2020.

[32] V. Sitzmann, M. Zollhoefer, and G. Wetzstein, “Scene representation
networks: Continuous 3d-structure-aware neural scene representations,”
in Advances in Neural Information Processing Systems (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
eds.), vol. 32, Curran Associates, Inc., 2019.

[33] K.-E. Lin, L. Yen-Chen, W.-S. Lai, T.-Y. Lin, Y.-C. Shih, and R. Ra-
mamoorthi, “Vision transformer for nerf-based view synthesis from a
single input image,” 2022.

[34] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics,” 2017.

[35] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer,” 2020.

[36] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick,
“Segment anything,” 2023.

